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STABIIZING STATE-FEEDBACK DESIGN VIA THE MOVING TIORIZON METIION'

w.Il. KWON, A M. BRUCKSTLEIN and T. KAIIATH

Information Systems Laboratory
Electrical Enginecring Department

STANFORD UNIVERSITY
Stantord, CA 94305

AUBSTRACT

A stabilizing control design for general linear time vary-
ing systems is prescnted and analyzed. The control is a
state-fecdback law with gains dctermined by a standard
method employed in optimnal regulator problems. The gon-
sidered cost function is, however, dynamically redcfined
over a fixed depth horizon. I'he method is shown to yield a
stable closcd loop system and computationally efficient
recursions for thie feedback gain are provided.

1. INTRODUCTION

Several approaches exist for the design of stabilizing
control laws for linear time-invariant systems. Along with
the classical frequency-domain techniques, the “modern”
performance index optimization methods further
guaranteed robust, stabilizing fcedback controls [1]). The
situation is quite different, however, for time-varying linear
systems. While an “optimal”, stabilizing state-feedback gain
for a time-invariant systern can be found by solving an alge-
braic Riccati cquation, the analogous solution for the time-
varying case requires the backwards iteration of a matrix
differential cquation over an infinite horizon {2].[3]). Obvi-
ously, this is not a practical way to obtain a stabilizing con-
trol. The problem arises from the fact that the comr putation
of the gain at every instant of time requires, in principle,
the optimization of a performance index over an infinite
time span into the future. A natural way to try to overcome
the computational difficulty is to assume that at all
moments ¢ we have to find the optimal control for a fixed,
finite horizon of depth T [4].[5). )

The standard regulator problem poses the question of
determining the optimal control u®{.) to be applied to a
linear system in order to minimize a cost functional over a
given interval (t‘.l,). In thc ca<e of a quadratic cost the
resulting control is a simplc siate-feedback law, the gain
computation involving the well-known backwards Ricecati
equation [1]. The control applicd at time ¢, given a “sliding”
horizon of fixed depth T, would therefore be the initial step
in minimizing a quadratic pcrformance index over (¢.6+T).
It is also immediate that this procedure lcads to a state-
feedback control law, the gain being computed through &
Riccati recursion starting at ¢ + 7 and proceeding backwards
tot [4]

Although very rcasonable in noncept, this receding hor-
izon procedure does not have ary obvious interpretation in
terms of optimizing a performance index over some
predetermined interval (¢,.1, ): its value lics instcad in the
fact that it yiclds a practical and computationally eflicient
technique for stabilizing genecal time-varying lincar sys-
tems. Also, it is worth mnentinning that this is a proper gen-
, eralization of Kilcinman's “casy” way to stabilize a time-

f This work wan supported in part by the Joint services Program at Stanord
University under Contract DAAGIN-HI-X-0007, hy the UV 8. A=my Research Office,
wder Contract DAAGZD TA0-0:21 wad the Air Force Offce of Suient:fie
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Kwon, whi'e on leave from toe eperorent of Instrunenieton and (,on\fol.
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invariant systems through state-feedback {6].

Since computing the fecdhack gain for the above
defined control law requires, in principle. completing a
backwards recursion over an interval of length T for all £ it
is not obvious that this procedure can be rendered compu-
tationally feasible. In the scquel we shall show that in fact
one can derive a recursive aigorithin that updates the con-
trol gain directly, avoiding the necessity to solve a back-
wards Riccati equation over and over again. This algorithm
is derived through a convenient embedding of the feedback
gain in a suitably defined scattering matrix and using some
well-known results of Redheffer scattering theory [7]. We
shall then address the problem of system stabilily, estab-
lishing that, under certain uniform controllability condi-
tions and some conditions on the moving interval cost func-
tion, the closed loop systern becomes asymptotically stable.

A suboptimal state estimator, the structural dual sys-
tem of the receding horizon controller, is introduced and
briefly discussed in the last section of the paper.

2. MOVING HORIZON CONTROL LAWS
‘Consider the time-varying linear system described by:

-d!t—z(t) = Az(t)+Bult) (2.1)

where z(.)eR™ and u(.)eR™. Let J be a standard quadratic
cost functional over a fixed interval (& ¢,) defined as
V]
J= fz(MDx(r) + w(DRu(DdT + 7 (tr)F, x(t;) (2.2)
4

Here @;. R; and F; are known, positive-deflnite, symmetric
matrices, essentially design parameters.

It is well-known, {1], that the optimal control input that
minimizes J is provided by the following state-feedback law

u'(t) = -R‘-'B‘K(t 'tI:F‘[)z(t) (2'3)

'The gain K(t.t,:i‘.,) is computed through the backwards
Riccati recursion

d 4
KOG iFy) = KR A, + A K(TutyiFy)
- K(T.t,:f"l)B,.R"‘b",K(T,t!:F‘,) +Q,

with final condition K(t,.t, ;F,,) = F,

(2.4)

The modificd, receding horizon control u™(¢) is defined
- as the input at time ¢ that would be needed to mninimize,
over (¢t.t+7), the following criterion
“"r

In = .{ (= (MQz(7) + w (NRu(D]dr

+2(L+T)Feorz(E+T) (2.5)

Thercefore this control law is also a state-feedback Jaw, given
by: ’

um(t) = ~RVE(K(EL 4T Frar)z(t) (2.8)

the gain X(1.L+T:F,,y) being obtained from the backwards
slé'gnli vquation (2.4) with t, replaced by £+ 7.
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The interpretation of this modified control is that, at
each moment ¢, the input applied is chosen as if the optimi-
2ation of the criterion J,, over (¢,2+7T) was the overall
objective. It is readily scen. though, that this control does
not minimize any obvious overall cost function of the type
(2.2) on any given interval (.t ).

In principle, in order to compute K(t.t+7:Fi.r) one
might solve at all moments in time the backwards Riccati
equation, with final condition at £+ T given by F¢,r. This is
not a computationally [casible approach. However, one
immediately recalizes that in the case of time-invariant sys-
tems and fixed weighting matrices @, R and £. the moving
horizon method yicids a constant feedback gain. The control
law, in this case, is simply given by

u™(t) = ~RBKrz(t) (2.7
where Ky can be obtained from

5—1{. = KA+AK ~KBRSBK, +Q: Ko=F  (2.8)

The particular case of @ = 0 andF -+« provides Kicinman's
method for stabilization of a time-invariant system [6).

‘The general case with F; = » turns out to be very
important in providing a stabilizing moving horizon control
for time-varying systems. The infinite weight assigned to the
final state implies that the optimal control is required to
take the state to O at the final time, while minimizing a qua-
dratic cost over the given interval [4]. In this case the back-
wards Riccati equation bhas infinity as initial condition, a
somewhat ambiguous starting point for a recursion. There-
fore thc following well-known trick is invoked: instead of
considering the differential equation for K(t.t,;=) derive a

show that the result is the following Riccati equation
-‘:TP(‘.‘I) s - P(‘.‘,)‘. - A;P(t.!,)

-P(‘.'I)QP(IJI) + B‘R‘-IF‘ (2.9)

Now, however the final condition is P(t,.t;) = 0. For the
case of F; 1y == the modified, moving horizon control is given

by:
u™(t) = ~R\B Pt +T)x(t) "(2.10)

and the computation requires the inversion of P(£,t+7T) at
all .

It was proved by Kalman in [2], that the "steady-state”
time-varying feedback gain K(f.=) stabilizes, under uniform
complete controllability assumptions, the time-varying sys-
tem (2.1). Praclically, however there is no way to obtain
K(t.=). The moving-horizon control laws are readily com-
putable in principle, since they require solutions of recur-
sions over a finite time-span. Even better than that, we can
derive cflicient gain-update algorithms that remove the
necessity to re-solve for each time point the backwards Ric-
cati equation, thus rendering the method computationally
eflicient.

3. GENERAL GAIN UPDATF. RECURSIONS

Using some results from thc scattering theory origi-
nally developed by Redheffer for Lhe study of transmission-
line problems. and then applied to estimation and control
theory by Kailath and his coworkcrs, we derive recursive
update algorithms for the gain required in moving horizon
controls. We refer to {7])-{10] tor comprehensive reviews of
scattcring theory. The main idea of scattering theory is to
“embed Lthe Riccati variable, XK(+.0), that satisfics a forwards
or backwards cquation, into a scottering matrix S, The
embedding is done by defining the auxiliary matrices ¢(7,0),
¥{7.0) and L(7.0) through the following differential vqua-
tions:

- o(r.0) = 20)A, - BRI K (r0)] (3.1)

recursion for P(t.ty) = K-'(t.t;;=). It is quite simple to

: -}a—&(‘r.o): = (A, + L(7.6)Q,]1¥(7.0) (3.8)
2 y(r0) = ¥rollA, + Quliro)] @)
-a—ao—l.(‘r.a) = A L(1.0) + f.(-r.a)A',

+ L(7.0)Q,L(7.0) - B,R,\P, (3.8)
2 K(r.0) = ¥(r.0)Q,8(r.0) (9

TmTW T mMTwWTET
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‘. . . . »

(<)

3 ¥ra) = (A - K(ro)B.R,F J¥(r.0) (3:2)
—:TL(-r.a) = ¢(r.0)8,R, B ,¥(1.0) (3.3)

Together with the backwards Riccati equation (2.4), in which
the final time has been parametrized,

-Ear_x(f.a) = A K(r.0)+ K(r1,0)A,

~K(r.0)B,.R,”'B ,K(T1.0)+Q, (3.4)

and appropriate final conditions at r = g, these equalions
yield the backwards evolution of a 2n by 2n scattering
matrix, defined as

. &(r.0) L(r.0) . 10
See = [I{(r.a) ¥(r.0)| “ith See = [0 /] l

The above chosen final values matrix does not display the
correct starting point for the g»in recursion. Since, how-
ever, we also have through scattering theory a method to
change initial or final conditions of Riccati equations Lo arbi-
trary values, we shall in the sequel concentrate on this gen-
eric case of Fy = 0. After the gain is computed for this par-
ticular final condition the true gain can readily be obtained
using a change of final condition formula (see (3.11)).

Now, a two parameter matrix S,, has been defined
through a set of backwards differential equations together
with a "canonical” final condition, an identity matrix with
dimension 2n. In the sequel we shall have to exploit the
properties of this matrix, in particular its behavior as the
parameter ¢ varies infinitesimally. In this context we have
Ehe];ollowing basic result due to Redheffer [7] (see also Reid

1))

THEOREM 3.1

Given that the matriz functions involved in (the
definition of the linear system (2.1) and the cost funclion
(2.2) are piecewise continuos, the elements of the above
defined scallering matriz obey the following forwards
differential equations:

(3.5)

the initial condition for S,, at ¢ =7 being the identily
matriz. :

The above result together with the backwards equations
defining the scattering matrix. provides the evolution of S,
with respect to variations in each index, T'and 0. Now, realiz-
ing that the moving horizon gain is obtained as a submatrix
of S(t.2+T) (up to a change to the true final conditions) we
need to derive evolution equations for Lhe case of simultane-
ous variation in the paraincters, according to 1=t and
o= t+T. We have the following

THEOREM 3.2

The evolution ejquations, for the sliding wrindow
scoftering matriz, are given by

d ()
'&TS(‘J"'T) = -OTS(TJN"‘."“T

+ -_:;_s(,’o) ! rage=teT (3' 10)
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The above relation, essentially the chain rule for
differentiation, provides a complete set of recursic..s for the
(zero final condition) fecdback gain and the auxiliary
matrices. These recursions are a combination of the evolu-
tion equations yielding the variations of §,, with 7 and ¢
separately. .

The initialization of the recursions of type (3.10) is done
by first solving the backwards cquations for an initial inter-
val, say ({p.to+T). for both the gain and the auxiliary
matrices.

In order to find the true fcedback gain sequence,
corresponding to the sequence of final conditions £, we
shall use the following formula, derived from a basic closure
property of the Riccati equation:

K({t+T:Feor) = K(tL+T)
+ V(T o p[1-L(t L+ T)F s ]'0(e.t +T) (3.11)

where K(r,0.F,) denotes, as before, the gain obtaincd
through the backwards Riccati equation with final condition
F,.

Note that (3.11) provides the true gain by operating on
the entries of S¢;47) and on F;,r . More about the deriva-
tions, essentially very simple when relying on scattering
theory. of the above mentioned results can be found in [B]-
[10}.

It is interesting to note that in the case of Fj+» we
obtain from (3.11) the following result:

Kt t4T:o)=Kk(t L+T)-V(t .t +T)L (L.t +T)P(t.t +T) (3.12)

which expresses the gain PY(¢.¢£+T) in terms of the recur-
sively obtained sliding-window scattering matrix.

Some extensions and numcrical considerations:

In the case of constant final weighting in the moving
horizon critcrion, we can also derive recursions of the type
(3.10) that provide the true gain directly, avoiding the need
for a continuous final condition adjustment. Also in case of
given differential behavior of F; the above simplification is
feasible. In all these cases the rccursions turn out to have
the form of (3.10), the modifications amounting to predeter-
mined changes in the matrices appearing in the recursions
with index ¢ + 7. This is of course not unexpected, since the
changes occur at the right-end boundary conditions.

It is also obvious that the same embedding can be done
starting with the P(t.t+7T) gain, which dgain obeys a back-
wards Riccati equation, and this method will provide direct
recursions for it.

The above derived algorithms, although involving a
matrix twice the size of the gain matrix needed, have the
potential of being computationally much more eflicient than
solving the backwards Riccati recursion at cach point in

time. (Also note that we have considerable redundancy in -

the scattering matrix, since ¢(r.0) = ¥'(7.0) by dcfinition.)
Some numerical problems may howcver arise in propagating
the sliding-window diflerential =quations; the updating algo-
rithms are likely to cumulate crrors and thus the gains
oblained after a large number of ilerations will differ from
the correct ones. The situation can be amecliorated by
implementing a restart procedurc at sdaptively determined
intervals. The idea is to computle, at intervals, the “true”
gain through the usual forwards or backwards growing-
memory update algorithm and to compare the result with
the gain provided by the sliding-window propagation. The
time interval Lo the next such check procedure can then be
incrcased or decrcascd according to a suitably defined
measure of the diffcrence between the “true” and pro-
pagated gain. (Obviously the sliding-window algorithms will
be propagated with the “"true” vatucs as initial conditions
between Lhe test inlervals, i.c. will be "restarlted”.) The
sbove process will clearly determine the period of time st
which a restart is nceussary in order to keep the error in
the gain wilthin a predeterimined bound.

kAR Y auliiee

Thus moving horizen control design is a computation-
ally feaxible miclhod for stabilizing time varying systems.
Thae above idcas can obviously be applicd to discrete-time
moving horizon control problems, sce for example refer-
ences [5) and [ 10).

4. CLOSED-LOOP STABILITY RESULTS

As pointed out carlicr, il is @ well-known resuit that the
feedback control law with K'(t,«) provides an asymptotically
;stable closed-loop system, undcr uniform controllability and
observability assumptions. It is not obvious at -this point,
however, whether the sliding horizon controls can stablhze a
general time-varying systerm.

The following simple example is quite suggestlve Let us
consider a scalar, time-invariant system‘ zr- ar +bu, with
+

f (qx2+ru?)d7. It

t

can be shown by straightforward algebra that, the closed
loop system is stable when T > (2aa)!In[{(a+1)/ (a-1)] for
a > 0, where a = (1+gb%/ ra?)V/2

This example shows that even without terminal weight
there exists a finite horizon Lhat stabilizes the system. In
the general infinite horizon case the terminal weighting
matrix plays no role and can be arbitrarily set to zcro. Since
the method we describe introduces a finite, sliding horizon
concept, the weighting matrix Fy, which is essentially a
design parameter, plays a crucial role in determining the
properties of the resulting control law. In the scquel we
shall discuss three different choices for Fg:

the modificd receding horizon cost Jn, =

Case 1: F;

=0 . (4.10)
Case 2. F; = w : “(4.1b)
Case 3:
{F: Fo >0, %ﬂ+A’,ﬂ+i}A,-ﬂB,R¢"B,F,+Q, <0 (4.1c)

" In the above classification the infinite final weighting
can, of course be considered as a particular case of (4.1c).
It has a special value however, being the most useful one for
practical design, as will become clear later.

The existence of a finite, though possibly large horizon
for which the control law stabilizes the system can easily be
proven for the time-invariant case. We have the following
result.

THEOREH 4.1

If the pair {A.B] is controllable and we hauve
F=0,Q>0,R >0, then there erists a finite horizon T, such
that the moving horizon control law (2. 6) slabilizes the sys-
tem.

PROOQF: The closed loop system is given by

:Tz(t) = [A - BRT'BKr)z(t)

where Ky is oblained from (2.8). Let X be the solution of the
algebraic Riccati equation, i.c the stcady-slate fecdback
gain. Lot K3* = K -~ K7. Then the closed-loop system can be
written as
%‘3“) = [A- BR"‘B’R]z(l) + BR'B K 2(t)

Now, since A-BR-'BRK is a stable matrix, it is suflicient to
show that the "perturbation term” |1 BR'B Az ../ !z}
can be made arbitrarily smalt for some 7. But it is known
that X <Ki, for t<tp and that Ky +K as T e, Lthus

NBR B Kz} |
Hxl!

and therefore Lhere exists a finite 7 such that the perturba-
tion is arbitrarily closc Lo zcru. This complictes the proof. ¢

+ 0 as T

L S-~erand

'.
'

n

Bme B o & F— R - S PO




- [ R UV

2

The existence of a possibly very large horizon for which
the modifled control yields a stable closed-lvop systcm..for
the general time-varying case, can be shown using a similar
approach. Intuilively it is clear that, for a very large 1_'. the
value of K(t.t+T;F) approaches K(l.=) to un arbilrary
degrce. This provides a control that diflers very little trgm
the stcady-state feedback law, which is known to stabilize
the time-varying system.

The case of zero final weighting teads thus to generally
large horizons and also problems in determining a suitable
depth 7. The case of F; = = for which we actually give a
method for choosing the horizon depth, that turns out to be
connected to the controllabilily properties of the system to
be stabilized, is therclore of greater practical interest. In
order to state the resulls in this case we recall the following

DEFINITION
The patr {A(t).B(t)] is uniformly completely controll-
able if for some 650 the following inequalities hold for all ¢

1) aJ s W(t.t+8) s azl (+.2)

2) llpltrtedll < 71t,~tq) (4.3)

In the above expressions ¢(r.0) stands for the state tronsi-
tion matriz of A(t), a.'s are positive constants, y(.) maps R
#nto R and is bounded on bounded intervals and W(r.0) is
tha controllability malriz defined as:

[
W(tats) = iv(h-o)l?.ﬂ.w'(h-a)dc (4.4)

We now have the following result on the stability of mov-
ing horizon control laws with Fy = =, which was first proved
in [4).

THEOREM 4.2

If the pair §A By | is uniformly completely controllable,
ond if 0s@Q,<a,/ and ag/sRy<asl then for any T > § the
moving horizon control law (2.10) stabilizes the system

(21).

Now, in addition to the previous particular cases of final
weighting a somewhat more general class of final weighting
sequences will be discussed. The most general case of an
arbitrary sequence F; is extremely difficuit to handie due to
a lack of known monotone properties for solutions of Riccati
equations. Therefore we shall investigate the class of
sequences defined by (4.1c). It may be that with further
effort the above results can be extended to more general
situations, as has been done for time-invariant systems in
[16]{17). for example.

In order to prove the main result, some properties of
Riccati equations have to be established first. These are
summarized in the following lemma (see also [11]).

LEMMA 4.1

1) If the matriz F; belongs to the class defined by
(4.7c), then K(7.0). the solution of the backward Riccali

. Ll S

e v— .

backwards Riccati equations as follows:
~ 2 H() = MO+ B -HOBRBH(E)I+ Q' (4.72)

~ 2 N(t) = NOA+ AN -N (OB R IBN(E)+G2 (4.75)
with final conditions given respectively by
”(‘f) = F| and N(ll) = Fg

Now it is readily realized that if ') = F', and &'=> Q= then
M(¢)=N(t) for all t = t,. Similarly, we can show that pro-'
vided @' = Q% Fy,= Fp implics M(t)= N(t) at all t s¢,.|
These incqualities immuediately provide (4.5) since by choos-|
ing K(ga.0::F,) = F,, we shall have K(0,.05:F,,) < Fgy by’

(4.1c) and therefore K(t.0,.F,) > K(t.0%:F,,) is implied by
the fact that X (a..a,:i‘,‘)=i’,‘ < l\'(a..ag:f‘,.). ‘

2) The result of the second part of this lemma may be
oblained by a slight modification of the arguments given in|
{2).{12){14] and the definition of uniform complete control-!
lability. s

Let us give an interpretation to condition (4.1c). Note
that this condition implics that the matrix F; satisfies the
following differential equation (of course under the assump-
tion that its evolution is differentiable)

-2-Fi = RAAF-FBR7BF+Q+HH, (4.8)

for some matrix sequence H;. Let X (t.t,;f‘, ) be the solution
of the backwards equation (2.4) with final condition F,.
Then we have

Fo=K(tt, :F.,) for all t<t, (4.9)

and thus we can state that the steady-state solution for the
gain K(t,=) has to be a lower bound on the matrix
sequences of class (4.1c). We are now in a position to prove
the following result

THEOREM 4.3

If F; is a matriz sequence of class (4.1c), R, and §
satisfy the conditions of lemma 4.1 and the pair [A .5, ] is
uniformly completely controllable, then for any fized T
such that § £ T < = , the control (2.6) yields a closed loop
system that is uniformly asymptotically stable.

PROOF: Let us consider the adjoint of the ciosed-loop
system, with the feedback gain given by (2.8), where the
final weighting sequence is of class (4.1c)

d .
F:.“) = Ay z4(t) (4.10)

Kere A = A-B R B K K= K(LL+T:Fag).

where

Further consider an associatcd scalar-valued function

V(za.t) = z'o(t) K '2a(2t)
which, by part 2} of lemma 4.1, satisfies
oyl |z, | {®s ¥(z,.2) = ajol |z, | |®

Thercfore, the above defined function is a positive definite
function of the adjoint system state. Now the asymptotic

A : L ing lities: stabili!:y of the originat cloxed-loop system is guarantecd it
L.‘_- equalion (2. 4) satisfles the Jollowing inequali the adjoint system state vector is exponentially increasing
. K(r.05:Fe) = K(7.05:F,) for T<0,%0g (4.5) (i.e. the adjoint system is asymptotically unstable). But we
o s ¢ can show that

o 2) If the pair §A . .B,} is uniformly completely controll-

N

d z g R - d, .
able and for all L, a3/ < & < a,/ and ag! < Ky < as/ then for gt Vizat) = T d=A K =K A 420 RV 4 o ix
any T such that § < T < = thare there exisl positive con-

stonls a, and ag such that

ay] < K(Lt+Tily,y) S ag/ (4.8)

vy
1@

=ZABR B KT QKT O—OG.K_‘(! 0 F ) gurerize

™
‘
e

and using the result part 1), lemma 4.1, on the munotone

properties of the gain w.r.t. changes in the second parame-
ter. we obtain

I'.
-.t
ot

PROOF: 1) We shall derive this result using some mono-
tone propertics of Riccati equations. Consider two

o.l

a‘-"—V(z..t) > L By Ry Bz, (4.11)
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N.ow. let &,(7.0) be the transition matrix of the closed-loop
system £ = Agz. From (4.11) it Tollows that

V(za(t)).t,) - V(2a(to)ito) =
'

2oL [0t OB R O (ot 2t (4.32)
L .° .

= ayllze(te):.? for ty=to+d  (4.13)

for some positive constant a;;. The inequality (?.13) results
from the fact that the closed-loop system is uniformly con-
trollable [12], since there cxists some positive constant &2
such that
tod
TR K 1%de < ar
(

But, (4.12) implies that the adjoint system increases
exponentially, which in return guarantees the asymptotic
stability of the original system with the feedback under con-
sideration. This complctes the prool. »

The above theorem indicales that therc exists a whole
class of terminal weighting matrix sequences tha_t. with a
horizon even slightly greater than the controllability inter-
val 4, yicld stabilizing control laws. From the above result.s
it is also conjectured that large horizons are necessary if
the final weighting matrix is small, whereas for sequences of
large final weightings the stabilizing horizon approaches the
controllability interval 8.

The above results simplify somewhat for the case of
time-invariant systems. The class (4.1c). of constant final
weighting matrices is readily seen to be the sgl of final
weighting matrices satisfying F > K.._the solution of the
algebraic Riccati equation associated with the control prob-
lem.

5. SOME FURTHER TOPICS AND RESULTS ‘
5.1. Cost incurrcd by moving horizon laws

The moving horizon control dynamically redefines the
performance criterion and therefore it clearly does not
optimize any overall criterion. Since the standard cost of
the type (2.2) is an accepted measure for the performance
of a control law it is useful to determine bounds on the cost
incurred by the modified control laws. Indeed, we can prove
the following

THEOREM 5.1

The standard quadratic cost incurred by the sliding
horizon control has the following bound

Ttz (@ 0yru @R (O
%

< S’(f‘)x(t‘.“+ T:rg‘or)z(“) (5'1,

PROOF: The quadratic cost for a linear feedback control
of the type (2.3) is given by =z'(t)M(t.ts )z (t), where
M .t,) obeys the following backwards recursion

~Lu@ty) = KHLE) ¢ ML

+ K LAT:Fan) B R B K+ TiFiar)+ @
with the final condition M(t,.t;) = F;,. From {3.10) we have
B KL TiFiom = KK TFL KL TR A
KA+ T:Foor)BR B KWL+ T Fan* @ -%K(Lﬂif'.)l.-ur

Now define E(t) = M(t.0,)~K(t.t +TiF,y). 1t obviously
satisfics the following equation .

-‘&de:(‘) = A’.E(')"’:(‘)A‘"Baod’(l'a:rc)'cllbf

P PSP PP U Py Vig T D5 DU D O a0 WA G W)

with boundary condition al ¢, given by F,I—K(!,_l, +T:Feor).
Integrating the above equation, and taking into considera-

tion the fact tho last term is negative (by lemma 4.1), we
abtain

Elt) < 0'(!,.&)[!‘,,—-1((!,.[,+7';l-‘,l,,-)]¢(t,.g‘) (5.2)

Since the closed-loop system was proved asymptotically
stable we shall have E()+0 as t;-+w,  Therelore
HM(t, )< K(t.L+T:Fy,y) which establishes the desired
result. »

Further work on moving horizon controls is ;t‘ill needed

to see whether it also inherits more of the nice features of
“optimal” feedback controls, as for example robustness and
good sensitivity properties. -

6.2. A structurally dual state estimator

Since it is well-known thal there exists a duality
between optimal linear regulator problems and oplimal
state estimation, one may ask what state estimation fitter is
the dual of the moving horizon control. The answer is
indeed simple. Structurally. the dual system is a Kalman
filter with a sliding window gain defined as the solution of a
forward Riccati equation over a fixed-length interval
(t~7.t). This estimator is a suboptimal state reconstruc-
tion filter and can be analyzed by the methods employed
above in order to establish stability results. Also, obviously,
the gain update equations can be derived in a similar way.

An important fact to realize, however, is that this filter
does not provide the "best” estimate of the state given the
observations over the sliding interval. It is not a solution to
the limited memory state-space filtering problem, as posed
‘for example in Jazwinski [15]. since it does not “completely
forget” data beyond t-T. This can be easily seen from the
fact that the filter has infinite impulse response. Scattering
theory does however provide a solution to this problem, too.
The solution involves the application of an idea similar Lo
the one that led to efficient gsin update formulas to an
extended scattering matrix. Thesc results are presented in

[10].

8. CONCLUDING REMARKS

A general and computationally feasible method of sta-
bilizing time-varying linear systems through state feedback
was presented. A variant of the method, the case of infinite
final weighting. was previously analyzed in [4]. and the sys-
tem stabilizing property of the resulting control law were
established. This paper further generalizes the moving hor-
izon method to a whole class of final weighting matrices and
also provides explicit gain update algorithms which render
the method more efficient computationally.

Several extensions of the method are possible. We could
for example deal with a time varying horizoh depth 7;, and
it is should be clear that the approach prescnted in scction
3 easily yields the gain update algorithms for this case too.
One might wish to change the horizon depth to adapt lo
varying controllability propertics of the system under con-
trol. The case of discrete time systems can casily be
treated within the same framework the results being some-
what more involved algebraically but not conceptually (sce
for example [5].[10] and also [15)).
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